THE INTEGRAL REPRESENTATION OF FRACTIONALLY

EXPONENTIAL FUNCTIONS AND THEIR APPLICATION

TO DYNAMIC PROBLEMS OF LINEAR VISCO-ELASTICITY

8. I. Meshkov

Fractionally exponential functions are written in the integral form and distribution functions
with an Abelian singularity are obtained for the corresponding relaxation and retardation
spectra. A principle is stated, defining the dynamic problems for which weakly singular
functions can be used as the kernels of the integral operators. A one-dimensional sound wave
traveling in a semiinfinite visco-elastic medium is considered. The generalized exponential
functions of fractional order, proposed by Yu. N, Rabotnov [1, 2] as the kernels of Boltzmann-
Volterra integral relations, have found wide applications in theory of linear visco-elasticity.
This is explained partly by the great mathematical flexibility of the F-operators when ap-
plying the Volterra principle to the solution of elastically hereditary problems and partly

by the fact that. almost all weakly singular kernels possessing an Abelian singularity are
connected in some way or other with the F-functions. For example, the resolvent of the ele-
mentary weakly singular Abelian kernel is an F-function. The product of an exponential func-
tion with an Abelian kernel represents a particular case of the product of two F-functions
with different fractional parameters, while the resolvent of such a kernel is the product of
an exponential function with an F-function [3, 4]. Since the e-functions are defined by slowly
convergent series, their various asymptotic forms {2, 5-8] are commonly used in practicaI
calculations. The theory of F-functions can be developed further in the context of their in-
tegral representations, which enables a more exact physical interpretation to be given to
their parameters and on occasion simplifies computational operations.

1. The most general definition of F, -functions is given in [1]; while the same approach will be used

here, the working will be performed in Laplace space and different notation is introduced.

The following relations between the stress o and deformation ¢ are taken as fundamental:
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] Here E,, =Jq 7}, Eq = J0‘1 are respectively the nonrelaxation and re-
I laxation values of the elastic modulus and pliability, while R(t) and K{(t) are
l the relaxation and after-effect kernels, which are expressible in terms of
|

the distributions Ay(, 7¢) and By(7,74) of the relaxation time 7 and retar-
dation time 7, respectively
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The expression connecting the Laplace transformants Ry(p) and Ky(p)
Fig. 2 of the relaxation and after-effect kernels is

Ee — Eo = EoRy () — EoKZ (P) (1.3)

The simplest hereditary function possessing an integrable singularity is the Abel kernel, which
characterizes the unsteady process. It can therefore be used meaningfully as the after-effect kernel for
describing unsteady creep [9]. But formally, there are two possibilities '

Kt)=tT(Mwr, R(@)=07 T Fote' = Eote®s - (1.4)

Here T'(y) is the gamma function, and vy its pai‘ameter of singularity (0 <y = 1). The following is
then obtained from (1.3) for the corresponding resolvents in Laplace space:

R (p)=vet v {p) + 117 K (p)=vst [Vi(pe)¥ — 4] (1.5)

Here and below, we take 7 = 7¢ if v = vg, and 7 = 75 if v = vy, where 7 and v appear without sub-
scripts.

There are two ways of transforming to the space of originals: first, by formal expansion of the right
sides of (1.5) in powers of »(p7)~7, followed by term-by-term passage to the original, and second, by di-
rect application of the Mellin-Fourier inversion formula. In the first case,

R() =1 Fy(—v, 1]1), K(t)=1"Fy(v, 1] 7T),

o () o 1.6
o /=0 3SR - o
n=0

Here Fy is the Rabotnov fractionally exponential function [1, 2], which is seen from (1.6) to be de-
fined by either an ordinary or an alternating series.

When the Mellin~Fourier formula is applied directly, an integral form is obtained for the F.y-func-
tion

1 C+ico .
R(t) =T tFy(— v, t] 1) = .E_l_ S Lxplphdp (1.7)
R RN

Here the case when the minus sign appears in front of the parameter v of the F’Y ~function is taken
for clarity, since this is the meaningful case as regards applications.

When v = 1, the singular points of the integrand of (1.7) are the branch points p =0 and p = «, and
the simple poles at the p for which the denominator (p7)Y + v vanishes. The latter are

D1,z = T-IWV7 [cos (/)= isin (/Y] (1.8)

The inversion theorem can only be applied to many-valued functions having branch points on the first
sheet of the Riemann surface, i.e., with —n = arg p = #, and the residues at the points Py are discounted
when evaluating the line integral (1.7). On the other hand, when v = 1, the one singular point p = vr=lig a
pole of the first order, and the integral is evaluated simply by finding the residue at this point. Taking a
contour of integration with a cut along the negative real axis and applying Cauchy's theorem, we get
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TTFy (— ey E]Te)= smm'S v 2exp(—t/t)dr ]
(= Ve £/ p (%] T + (v /7,) Vv 4 2 cosmy (=1 (1.9)

Fr(—w, t/7) = exp(—vt/7) (r="1).

Comparing (1.2) and (1.9), the distribution of the relaxation time can be written in the explicit form

sin ny T \Y T \"Y  _ —1
Ay (T, T) = v, [(TS—) Ve + (T_s) vet +2cos mr] (1.10)
When T is small, the asymptotic expression

sin®my __
Ay (v, ) =TT v (1.11)

£

is obtained, which is none other than the distribution for the Abel kernel.

For, on substituting (1.11) in (1.2) and writing the gamma function in Euler's integral form, (1.4) is
obtained. In short, corresponding to Rabotnov's relaxation kernel (1.6), with an Abelian singularity att =0
we have the distribution (1.10), likewise with an Abelian singularity, though now with respect to the relaxa-
tion time at T = 0. It may easily be seen that the distribution function A;(7,7¢) tends to zero as 7 — «, and
has a maximum provided that v = sinmy, i.e., v > 0.738. This is seen clearly in Fig. 1, where the figures
on the curves refer to the values of the parameter v, and it is assumed that vg =1, 7 = 1. It should be
mentioned that, when v, =1, the properties of the Fy-functions are such that the relaxation kernel and its
resolvent (the after-effect kernel) can be written in a symmetric form, namely,

R(t):‘r;*Fy(—fh t/te), K@) =1""F (=1, /7). (1.12)

An important property of weakly singular distributions of the relaxation time is that the correspond-
ing distributions of the relaxation time logarithms have no singularity. For, on substituting s = In 1/51/7 .
775'1 in (1.2) and (1.10), (1.11), the respective expressions

A, (s) = 21 (ch ys + cos my)]-! sin @y, VeAs (s) = m-1 sin (wy) exp (ys) (1.13)
are obtained.

The first of (1.13) was obtained in [10] when investigating the dispersion of a dielectric constant. It
is clear from Fig. 2, where the numbers on the curves again refer to the value of v, that the graph of Ay(s)
is a symmetrical hump, with a maximum at s =0 equal to

Ay (0) =Yy 5wt tg v, Y =1, my.
2. Consider the behavior of the elastically hereditary relationships (1.1) in the case of harmonic
deformation (stress). On writing (1.1) in Fourier space (p — iw), we then obtain

w:-:T, W= B Y, 2 =2 — iYs - (2.1)

Here w = E/Ew and z* = J/J» are the complex values of the modulus and pliability respectively,
their real and imaginary parts being given by

Ze= 1 — v, R(t)coso)tdt Ye = Ve R(t)smmt dt (2.2)

Zs=1-Fvs K (t)sinwot dt »

QQ/}S cm8
ctrg S

K(#)coswtdt, ys=vs (2.3)

In other words, for the elastically hereditary media (1.1), transformation from the pliability to the
modulus is possible via the function of a complex variable (2.1). Since the introduction of the €y-functions
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s T T T e involves finding the resolvent kernels, it seems worth discovering the
i ; Jf/ quantities which are resolvent invariants, i.e., remain unchanged in the
Z | ; Fourier space on mapping from the plane of the complex pliability to the
IXX plane of the complex modulus. From (2.1}, there are in general two inde-
22 04 pendent resolvent invariants. First we have the ratio of the imaginary to
\ real parts of the modulus and pliability, or the tangent of the so-called
- ] angle of mechanical loss
SN .
7 — tg 9=y;/ 2;, j=¢e,0, @< [0, Yoml. (2.4)
2 7 2 lnwv .
Second, it is easily seen from (2.1) that the expression
Fig. 3 (@ +yd) (@ + ) =1 (2.5)

is invariant.
In particular cases there may be more than two invariants.

In the light of these general remarks, consider how the complex planes of the modulus and pliability
behave when obtaining the ¥, _functions.

For Abel's after-effect kernel (1.4) and the corresponding Rabotnov relaxation kernel (1.6), we have

2o =1 4+ v(oT)"*cos Y, Yo = v{0T) ¥sin (2.6)

z = v (0t) ¥ J-cos P _ sin ¢ (2.7}
T wlen) +v (ot 2c0s P Vo= 3 (@)Y + v (0T)"Y 4 2cos P «

The dispersions of (2.6) and (2.7) are illustrated in Fig. 3, where the parameter value y = 7y 18
taken. The maximum of yg is reached when v~Ywn)Y =1 and is equal to ys(m) =Y tg Yoo

Equations connecting X and yj are easily obtained from (2.6) and (2.7)
Vo= (@ — D tg P (@ — YD) + (g + Y2 olgp)® = s osc?p, (2.8)

In the (x4,¥5) Plane of the complex pliability a straight line is obtained, cutting the axis of abscissae
at the point x; =1 at an angle 27— ¢, ¥ = 1/27r'y, measured in the positive direction (counterclockwise).

In the plane (xg,yg) of the complex modulus, the equation of a circle is obtained, with center at
L =Yy, Y& = —yctgy
and passing through the origin, since its radius is
r=1,cscy. (2.9)

When vy =1, ¢ = 1/27r, the behavior of the complex modulus corresponds to Maxwell's rheological
model.

This fact is illustrated in Fig. 4a, where the abscissa represents the real x;, and the ordinate the

imaginary yj. The numbers on the curves refer to the values of y. The point Xy = 1 corresponds to w =,

It can be verified by direct substitution of (2.6) and (2.7) in (2.4) and (2.5) that the relevant quantities
are invariant, the tangent of the angle of mechanical loss being equal to

tg ¢ = lcosp 4+ v (07) 1t sin . (2.10)

The expression (2.10) was used in [11] for describing the background of internal relaxation friction
and its physical characteristics and, in particular, for finding the true value of the activation energy.

It should be mentioned that there is a third invar-

%17 N T Y, N 7 iant in the case of kernels with an Abelian singularity,
/AR z / _ namely the tangent tg ¢ of the angle at which the tangent
0 25 1 J/.f 7 5 7 17 Y to the curve in the complex plane cuts the real axis at
a Z b O\ ;Z w ==, i.e., the absolute value of the angle ¥ remains
L - A unchanged at the point corresponding to w = .
Fig. 4
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All in all, it can be said that the Abelian singularity of hereditary kernels with respect to time at
t =0, and of the corresponding distribution functions with respect to the retardation (relaxation) time at
7 = 0, defines in the complex planes of the pliability and modulus the angle ¥ = 1/277‘)/ between the tangent to
the imaginary curve and the real axis at the frequency w =, If y = 1 there is no singularity and we get,
e.g., Maxwell's model with ¢ =1/27r - Since the dimensionless parameter wT appears when solving most prob-
lems in theory of linear visco-elasticity, an Abelian singularity can only be discovered via the parameter
v, which usually appears as the power in (w7)Y. In cases where T and w feature independently of one
another, the Abelian singularity reveals itself directly at 7 = 0 or w =, This fact is exemplified below by
the case of a sound wave traveling in an elastically hereditary medium,

If the symmetric expressions (1.2) for- the relaxation and after-effect kernels in terms of the Fy -
functions are used, the complex values of the pliability and modulus may be written as

zj= 1 v; Y(mj)-Y __};?osw Y= vj Shilp . (2.11)
(07;)" 4+ (0T} 2008 (@T,)" (0} J-2cos P
The dispersions of the quantities (2.11) are given in [12, 13].
On eliminating the parameter w7 from (2.11), the equation of a circle is obtained in both cases.
[z; — (1 &= Yyv))I? “l‘.(;l/j + Yp v; etg ) = Y4v;fese? P (2.12)
The circle (2.12) of radius rg = 1/21)0 csc P, with center at ' '
2t =1+ Ya Ve Yo' =—/yvoctg P
cuts the real x, axis at the points
zg(0)=1, z;(0)=1+ Vo = JoJoo ta
The circle (2.12) of radius ry = 1/21;8 csc ¥, with center at
2= 1 —yve 9= —Yaveoig
cuts the real xg axis at the points
‘ Ze (0) =1 — v = EyE™, 1z, (00) = 1,
This means that tg(7 — ) =tg(27 — ), i.e., |¢ = invar. This is clear from Fig. 4b, where we take
E(Ee -1 o v = 1/2. It is clearly seen that, as EjEx -1 0, Fig. 4b transforms into Fig. 4a.
Substitution of (2.11) in (2.4) and (2.5) confirms that the first two invariants are correct, while
tg ¢ = [Eco (0Te)* + Eo (0T} + (Eoo & Eo) 08 P (Foy — Eo)sin . (2.13)

Expression (2.13) was used in [14] for describing the peak of internal friction when the logarithm of
the relaxation time has a symmetric spectrum.

Due to the symmetry of the chosen relaxation and after-effect kernels, the modulus of the angle ¢
remains unchanged when w = 0, as well as when w =<, This fact results in extra resolvent invariants
making their appearance. Examples include the ratios of the lengths of the circles to the modulus and
pliability deficiencies, the ratios of the areas of the circles, and the ratios of the corresponding segments
in the complex half-planes to the squares of the modulus and pliability deficiencies.

3. As an example illustrating the application of F-y ~-functions to dynamic problems of hereditary
elasticity, take the propagation of a one-dimensional plane tranverse sound wave in the positive direction
of the x axis. In view of (1.1), the equation of motion can be written in the two equivalent forms

[+o]

. a2 ,

=02 o liu—'vzg R@)u(t—1t, x)dt’]
. 0

(3.1)

(o]
u =C°°2;9?_V°S KE@Yu(t—¢, 2)dt .
0
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Here u = u(x,t) is the displacement vector in the direction perpendicular to the x axis, while the dots
denote differentiation with respect to time.

For the stationary solution
u(z, t) = X () %ot (3.2)

the following equation is obtained from (3.1) for the function X(x):

1194
da?

LN =0, M =cletul=cy el . (3.3)

The solution of (3.3) is
X () = Aetrxf Beidx 4 (3.4)

The constants A and B are found from the boundary conditions. It is easily shown that, for a wave
damped at x = 0, we have A =0, B = X(0). The solution of (3.2) is thus

u (z, t) = X (0) exp [i (0t — kz) — axz} (3.5)
k= coo_l wlz l‘/2 cos Y @ = coo-l olw r‘/z cos @ (3.6)
a=c lo|z|"sinh@=c to|w|{sinle. (3.7}

Here, k is the modulus of the wave vector, a the coefficient of absorption, and ¢ the phase-shift be~
tween the stress and deformation, given by (2.4).

Equations (3.6) give the phase velocity ¢ and the logarithmic decrement &, defining the wave atten-
uated in space

¢ =0kl = cy|s| Tsect/p = cmiwl’/2 sec Y, @ (3.8)

A=1nlu{z, 1)/ u(z+ 20 ¢, )] = 2m tg Y, = 2nak™? . (3.9)

The wave characteristics (3.6)-(3.9) illustrate the properties of weakly singular hereditary func-
tions in stationary dynamic problems.

The dispersion of the phase velocity (3.8) and of the logarithmic decrement (3.9), like the tangent of
the angle of mechanical loss (2.4), is determined by the parameter wT, and in accordance with what was
said in Sec. 2, the Abelian singularity only reveals itself via the fractional coefficient y. The situation is
different for the coefficient of absorption o (3.7) and the modulus k of the wave vector (3.6), in which the
frequency w appears separately as a factor as well as in the product wr. Hence, for the weakly singular
hereditary functions considered here, o and k increase indefinitely as w — =; this is always true for k.
For, let us write the wave characteristics for the hereditary kernels (1.4) and (1.6), by substituting (2.6),
(2.7) and (2.10) in (3.6)-(3.9). As a result,

k,a=2"¢ o1+ 2v (01)Y cos P + v (1) F]" 4 [1 4 v (@1)7Y cos P11, (3.10%

Here, the plus sign holds for k, and the minus for «. When y = 1 (Maxwell model), (3.10) simplifies
considerably

Bya=2"¢ -t {1 4+v(or) 2] 4 1), (3.11)
The asymptotic behaviors of k and o for high and low frequencies are of interest. When v = 1, we
have
o>1, ke o[l 41 v{0r)™ cosP) (3.12)
0K, B o, (v/0Y) 0 Y cos 1 (3.13)

Consequently, k increases indefinitely, roughly linearly, as w —w, while it tends to zero as w — 0.

When vy = 1, the situation is similar for the coefficient of absorption o, the asymptotic expressions
for which are

031 axlhe, vt ol sin Y (3.14)
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frequency rises, the coefficient of absorption increases and shows no tendency to become constant.

0l ame (i) ol Ysinlyy, (3.15)

For Maxwell's model [y = 1, expression (3.11)], the asymptotic behaviors of k and « are given by
@>1) ke To[l+1Y®/ 2072, ol eyIvrt[1— Yp(v/20t)] (3.16)
(<) kmame, 1o% /' ' (3.17)

Thus, with v =1 and as w — <, the absorption « is frequency-independent to a first approximation
and defined by the constant (2cw7)~! v. This essential difference in the behavior of « in the cases vl
and y = 1 at high frequencies w confirms the conclusions of Sec. 2. Experimental study of the dispersion
of the coefficient of absorption [15] in a wide frequency range confirms (3.10), i.e., the fact that, as the

In the case of kernsls (1.4) and (1.6), the following are obtained for the speed ¢ of wave propagation
and the logarithmic decrement A:

e= V3 e, {[1+ 2 (@1)Y cos P + +* (07) 2 - [1 -1 v (01)"" cos pJy2 (3.18)
( A )2 [ 4 2v (01) Y cos P 4 v (01) ]2 — [1 + ¥ (01)~Y cos ]
2/ 7 1429 (01) " cos P+ v (01) ] - [1 v (07) 7 cos ] (3.19)
When v =1, we get
0= VZ oo {lt (@0 157, A= VEmoo,t ([1+ 9% (o] — 13, (3.20)
The asymptotic behaviors of ¢ and A at high and low frequencies are given by
11
@>1) c=cy [1—Yav(0)cosP], * A= av(wr) " sin (3.21)
(0<€1) cx cwv"/”(m'r)“ilz seclfp, Ax=2x[1—v1(on)']tgY:V (3.22)
=1 '
(0>1) c=e 1 —YgvE(01)%], A=nv(et)? (3.23)
(0<€1) cmeyRatv Yy, Ax[l—vi(er)]2n . (3.24)

Expressions (3.10)-(3.24) confirm the conclusions reached in Sec. 2. A study of the wave character-

istics for symmetric €, -functions may be found in [16].
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In conclusion, the author thanks Yu. N. Rabotnov for discussion.
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